Multi-scale Kernel Discriminant Analysis
نویسندگان
چکیده
The bandwidth that minimizes the mean integrated square error of a kernel density estimator may not always be good when the density estimate is used for classification purpose. On the other hand cross-validation based techniques for choosing bandwidths may not be computationally feasible when there are many competing classes. Instead of concentrating on a single optimum bandwidth for each population density estimate, it would be more useful in practice to look at the results for different scales of smoothing. This paper presents such a multi-scale approach for classification using kernel density estimates along with a graphical device that leads to a more informative discriminant analysis. Usefulness of this proposed methodology has been illustrated using some benchmark data sets.
منابع مشابه
A Multi-scale Nonparametric/Parametric Hybrid Recognition Strategy with Multi-category Posterior Probability Estimation
The synthesis of an effective multi-category nonlinear classifier with the capability to output calibrated posterior probabilities to enable post-processing is of great significance in practical recognition situations in that the posterior probability reflects the assessment uncertainty. In this paper, a multi-scale nonparametric and parametric hybrid recognition strategy is developed for this ...
متن کاملIndefinite Kernel Discriminant Analysis
Kernel methods for data analysis are frequently considered to be restricted to positive definite kernels. In practice, however, indefinite kernels arise e.g. from problem-specific kernel construction or optimized similarity measures. We, therefore, present formal extensions of some kernel discriminant analysis methods which can be used with indefinite kernels. In particular these are the multi-...
متن کاملDiscriminant Kernel Learning Discriminant Kernel Learning via Convex Programming
Regularized Kernel Discriminant Analysis (RKDA) performs linear discriminant analysis in the feature space via the kernel trick. Its performance depends on the selection of kernels. We show that this kernel learning problem can be formulated as a semidefinite program (SDP). Based on the equivalence relationship between RKDA and least square problems in the binary-class case, we propose an effic...
متن کاملFisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملRecognising Trajectories of Facial Identities Using Kernel Discriminant Analysis
We present a comprehensive approach to address three challenging problems in face recognition: modelling faces across multi-views, extracting the nonlinear discriminating features, and recognising moving faces dynamically in image sequences. A multi-view dynamic face model is designed to extract the shape-and-pose-free facial texture patterns. Kernel discriminant analysis, which employs the ker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003